Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Microbiol ; 13: 1043049, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2323295

RESUMO

Introduction: COVID-19 has a wide disease spectrum ranging from asymptomatic to severe. While humoral immune responses are critical in preventing infection, the immune mechanisms leading to severe disease, and the identification of biomarkers of disease progression and/or resolution of the infection remains to be determined. Methods: Plasma samples were obtained from infections during the initial wave of ancestral wildtype SARS-CoV-2 and from vaccine breakthrough infections during the wave of Delta variant, up to six months post infection. The spike-specific antibody profiles were compared across different severity groups and timepoints. Results: We found an association between spike-specific IgM, IgA and IgG and disease severity in unvaccinated infected individuals. In addition to strong IgG1 and IgG3 response, patients with severe disease develop a robust IgG2 and IgG4 response. A comparison of the ratio of IgG1 and IgG3 to IgG2 and IgG4 showed that disease progression is associated with a smaller ratio in both the initial wave of WT and the vaccine breakthrough Delta infections. Time-course analysis revealed that smaller (IgG1 and IgG3)/(IgG2 and IgG4) ratio is associated with disease progression, while the reverse associates with clinical recovery. Discussion: While each IgG subclass is associated with disease severity, the balance within the four IgG subclasses may affect disease outcome. Acute disease progression or infection resolution is associated with a specific immunological phenotype that is conserved in both the initial wave of WT and the vaccine breakthrough Delta infections.

4.
Infect Control Hosp Epidemiol ; 43(9): 1245-1248, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2185153

RESUMO

We estimated the annual bed days lost and economic burden of healthcare-associated infections to Singapore hospitals using Monte Carlo simulation. The mean (standard deviation) cost of a single healthcare-associated infection was S$1,809 (S$440) [or US$1,362 (US$331)]. This translated to annual lost bed days and economic burden of 55,978 (20,506) days and S$152.0 million (S$37.1 million) [or US$114.4 million (US$27.9 million)], respectively.


Assuntos
Infecção Hospitalar , Estresse Financeiro , Efeitos Psicossociais da Doença , Infecção Hospitalar/epidemiologia , Atenção à Saúde , Hospitais Públicos , Humanos , Singapura/epidemiologia
5.
Frontiers in microbiology ; 13, 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-2147289

RESUMO

Introduction COVID-19 has a wide disease spectrum ranging from asymptomatic to severe. While humoral immune responses are critical in preventing infection, the immune mechanisms leading to severe disease, and the identification of biomarkers of disease progression and/or resolution of the infection remains to be determined. Methods Plasma samples were obtained from infections during the initial wave of ancestral wildtype SARS-CoV-2 and from vaccine breakthrough infections during the wave of Delta variant, up to six months post infection. The spike-specific antibody profiles were compared across different severity groups and timepoints. Results We found an association between spike-specific IgM, IgA and IgG and disease severity in unvaccinated infected individuals. In addition to strong IgG1 and IgG3 response, patients with severe disease develop a robust IgG2 and IgG4 response. A comparison of the ratio of IgG1 and IgG3 to IgG2 and IgG4 showed that disease progression is associated with a smaller ratio in both the initial wave of WT and the vaccine breakthrough Delta infections. Time-course analysis revealed that smaller (IgG1 and IgG3)/(IgG2 and IgG4) ratio is associated with disease progression, while the reverse associates with clinical recovery. Discussion While each IgG subclass is associated with disease severity, the balance within the four IgG subclasses may affect disease outcome. Acute disease progression or infection resolution is associated with a specific immunological phenotype that is conserved in both the initial wave of WT and the vaccine breakthrough Delta infections.

6.
J Med Virol ; 94(6): 2460-2470, 2022 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1748622

RESUMO

Coronavirus Disease 2019 (COVID-19) serology has an evolving role in the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, its use in hospitalized patients with acute respiratory symptoms remains unclear. Hospitalized patients with acute respiratory illness admitted to an isolation ward were recruited. All patients had negative nasopharyngeal swab polymerase chain reaction (PCR) for SARS-CoV-2. Serological studies using four separate assays (cPass: surrogate neutralizing enzyme-linked immunosorbent assay [ELISA]; Elecsys: N-antigen based chemiluminescent assay; SFB: S protein flow-based; epitope peptide-based ELISA) were performed on stored plasma collected from patients during the initial hospital stay, and a convalescent visit 4-12 weeks later. Of the 51 patients studied (aged 54, interquartile range 21-84; 62.7% male), no patients tested positive on the Elecsys or cPass assays. Out of 51 patients, 5 had antibodies detected on B-cell Epitope Assay and 3/51 had antibodies detected on SFB assay. These 8 patients with positive serological test to COVID-19 were more likely to have a high-risk occupation (p = 0.039), bacterial infection (p = 0.028), and neutrophilia (p = 0.013) during their initial hospital admission. Discrepant COVID-19 serological findings were observed among those with recent hospital admissions and bacterial infections. The positive serological findings within our cohort raise important questions about the interpretation of sero-epidemiology during the current pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Feminino , Febre , Humanos , Masculino , Pandemias , Reação em Cadeia da Polimerase , SARS-CoV-2/genética
8.
Brain Behav Immun Health ; 19: 100406, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-1592211

RESUMO

The COVID-19 pandemic has had an unprecedented impact on healthcare systems globally, giving rise to significant morbidity and mortality. Vaccination has been widely regarded as the most important strategy to contain the pandemic. Whilst local side-effects of the BNT-162b2 (Pfizer-BioNTech) vaccine are well known, concern has emerged due to sporadic reports of immune-mediated adverse effects (Cines and Bussel, 2021; Rela et al., 2021). As of August 19, 2021, 4.54 million individuals had received COVID-19 vaccines in Singapore (Oxford Martin School UoO, 2021). We report a case series of two patients who developed aseptic meningitis after vaccination.

9.
J Clin Immunol ; 42(2): 214-229, 2022 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1544509

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have become dominant as the pandemic progresses bear the ORF8 mutation together with multiple spike mutations. A 382-nucleotide deletion (Δ382) in the ORF7b and ORF8 regions has been associated with milder disease phenotype and less systemic inflammation in COVID-19 patients. However, its impact on host immunity against SARS-CoV-2 remains undefined. Here, RNA-sequencing was performed to elucidate whole blood transcriptomic profiles and identify contrasting immune signatures between patients infected with either wildtype or Δ382 SARS-CoV-2 variant. Interestingly, the immune landscape of Δ382 SARS-CoV-2 infected patients featured an increased adaptive immune response, evidenced by enrichment of genes related to T cell functionality, a more robust SARS-CoV-2-specific T cell immunity, as well as a more rapid antibody response. At the molecular level, eukaryotic initiation factor 2 signaling was found to be upregulated in patients bearing Δ382, and its associated genes were correlated with systemic levels of T cell-associated and pro-inflammatory cytokines. This study provides more in-depth insight into the host-pathogen interactions of ORF8 with great promise as a therapeutic target to combat SARS-CoV-2 infection.


Assuntos
Imunidade Adaptativa/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Citocinas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/imunologia , Mutação/imunologia , Pandemias/prevenção & controle , Linfócitos T/imunologia
12.
Indoor Air ; n/a(n/a), 2021.
Artigo em Inglês | Wiley | ID: covidwho-1409407

RESUMO

Abstract Reliable methods to detect the presence of SARS-CoV-2 at venues where people gather are essential for epidemiological surveillance to guide public policy. Communal screening of air in a highly crowded space has the potential to provide early warning on the presence and potential transmission of SARS-CoV-2 as suggested by studies early in the epidemic. As hospitals and public facilities apply varying degrees of restrictions and regulations, it is important to provide multiple methodological options to enable environmental SARS-CoV-2 surveillance under different conditions. This study assessed the feasibility of using high-flowrate air samplers combined with RNA extraction kit designed for environmental sample to perform airborne SARS-CoV-2 surveillance in hospital setting, tested by RT-qPCR. The success rate of the air samples in detecting SARS-CoV-2 was then compared with surface swab samples collected in the same proximity. Additionally, positive RT-qPCR samples underwent viral culture to assess the viability of the sampled SARS-CoV-2. The study was performed in inpatient ward environments of a quaternary care university teaching hospital in Singapore housing active COVID-19 patients within the period of February to May 2020. Two types of wards were tested, naturally ventilated open-cohort ward and mechanically ventilated isolation ward. Distances between the site of air sampling and the patient cluster in the investigated wards were also recorded. No successful detection of airborne SARS-CoV-2 was recorded when 50 L/min air samplers were used. Upon increasing the sampling flowrate to 150 L/min, our results showed a high success rate in detecting the presence of SARS-CoV-2 from the air samples (72%) compared to the surface swab samples (9.6%). The positive detection rate of the air samples along with the corresponding viral load could be associated with the distance between sampling site and patient. The furthest distance from patient with PCR-positive air samples was 5.5 m. The airborne SARS-CoV-2 detection was comparable between the two types of wards with 60%?87.5% success rate. High prevalence of the virus was found in toilet areas, both on surfaces and in air. Finally, no successful culture attempt was recorded from the environmental air or surface samples.

13.
Biosens Bioelectron ; 194: 113629, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1401251

RESUMO

Accurate and accessible nucleic acid diagnostics is critical to reducing the spread of COVID-19 and resuming socioeconomic activities. Here, we present an integrated platform for the direct detection of SARS-CoV-2 RNA targets near patients. Termed electrochemical system integrating reconfigurable enzyme-DNA nanostructures (eSIREN), the technology leverages responsive molecular nanostructures and automated microfluidics to seamlessly transduce target-induced molecular activation into an enhanced electrochemical signal. Through responsive enzyme-DNA nanostructures, the technology establishes a molecular circuitry that directly recognizes specific RNA targets and catalytically enhances signaling; only upon target hybridization, the molecular nanostructures activate to liberate strong enzymatic activity and initiate cascading reactions. Through automated microfluidics, the system coordinates and interfaces the molecular circuitry with embedded electronics; its pressure actuation and liquid-guiding structures improve not only analytical performance but also automated implementation. The developed platform establishes a detection limit of 7 copies of RNA target per µl, operates against the complex biological background of native patient samples, and is completed in <20 min at room temperature. When clinically evaluated, the technology demonstrates accurate detection in extracted RNA samples and direct swab lysates to diagnose COVID-19 patients.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoestruturas , Humanos , Microfluídica , RNA Viral/genética , SARS-CoV-2
14.
Adv Sci (Weinh) ; 8(18): e2101155, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1316191

RESUMO

Accessible and adaptable nucleic acid diagnostics remains a critical challenge in managing the evolving COVID-19 pandemic. Here, an integrated molecular nanotechnology that enables direct and programmable detection of SARS-CoV-2 RNA targets in native patient specimens is reported. Termed synergistic coupling of responsive equilibrium in enzymatic network (SCREEN), the technology leverages tunable, catalytic molecular nanostructures to establish an interconnected, collaborative architecture. SCREEN mimics the extraordinary organization and functionality of cellular signaling cascades. Through programmable enzyme-DNA nanostructures, SCREEN activates upon interaction with different RNA targets to initiate multi-enzyme catalysis; through system-wide favorable equilibrium shifting, SCREEN directly transduces a single target binding into an amplified electrical signal. To establish collaborative equilibrium coupling in the architecture, a computational model that simulates all reactions to predict overall performance and optimize assay configuration is developed. The developed platform achieves direct and sensitive RNA detection (approaching single-copy detection), fast response (assay reaction is completed within 30 min at room temperature), and robust programmability (across different genetic loci of SARS-CoV-2). When clinically evaluated, the technology demonstrates robust and direct detection in clinical swab lysates to accurately diagnose COVID-19 patients.


Assuntos
COVID-19/virologia , DNA Catalítico/genética , Nanoestruturas/química , SARS-CoV-2/genética , Humanos , Limite de Detecção , Técnicas de Diagnóstico Molecular/métodos , Nanotecnologia/métodos , Pandemias/prevenção & controle , RNA Viral/genética , Manejo de Espécimes/métodos
15.
Front Immunol ; 12: 680188, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1311374

RESUMO

A significant proportion of COVID-19 patients will progress to critical illness requiring invasive mechanical ventilation. This accentuates the need for a therapy that can reduce the severity of COVID-19. Clinical trials have shown the effectiveness of remdesivir in shortening recovery time and decreasing progression to respiratory failure and mechanical ventilation. However, some studies have highlighted its lack of efficacy in patients on high-flow oxygen and mechanical ventilation. This study uncovers some underlying immune response differences between responders and non-responders to remdesivir treatment. Immunological analyses revealed an upregulation of tissue repair factors BDNF, PDGF-BB and PIGF-1, as well as an increase in ratio of Th2-associated cytokine IL-4 to Th1-associated cytokine IFN-γ. Serological profiling of IgG subclasses corroborated this observation, with significantly higher magnitude of increase in Th2-associated IgG2 and IgG4 responses. These findings help to identify the mechanisms of immune regulation accompanying successful remdesivir treatment in severe COVID-19 patients.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Citocinas/sangue , Hospitalização , SARS-CoV-2/genética , Monofosfato de Adenosina/uso terapêutico , Adulto , Idoso , Alanina/uso terapêutico , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Becaplermina/sangue , Fator Neurotrófico Derivado do Encéfalo/sangue , COVID-19/sangue , COVID-19/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Proteínas de Membrana/sangue , Pessoa de Meia-Idade , Estudos Prospectivos , Glicoproteína da Espícula de Coronavírus/imunologia , Resultado do Tratamento
16.
EBioMedicine ; 66: 103319, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-1174196

RESUMO

BACKGROUND: Host determinants of severe coronavirus disease 2019 include advanced age, comorbidities and male sex. Virologic factors may also be important in determining clinical outcome and transmission rates, but limited patient-level data is available. METHODS: We conducted an observational cohort study at seven public hospitals in Singapore. Clinical and laboratory data were collected and compared between individuals infected with different SARS-CoV-2 clades. Firth's logistic regression was used to examine the association between SARS-CoV-2 clade and development of hypoxia, and quasi-Poisson regression to compare transmission rates. Plasma samples were tested for immune mediator levels and the kinetics of viral replication in cell culture were compared. FINDINGS: 319 patients with PCR-confirmed SARS-CoV-2 infection had clinical and virologic data available for analysis. 29 (9%) were infected with clade S, 90 (28%) with clade L/V, 96 (30%) with clade G (containing D614G variant), and 104 (33%) with other clades 'O' were assigned to lineage B.6. After adjusting for age and other covariates, infections with clade S (adjusted odds ratio (aOR) 0·030 (95% confidence intervals (CI): 0·0002-0·29)) or clade O (B·6) (aOR 0·26 (95% CI 0·064-0·93)) were associated with lower odds of developing hypoxia requiring supplemental oxygen compared with clade L/V. Patients infected with clade L/V had more pronounced systemic inflammation with higher concentrations of pro-inflammatory cytokines, chemokines and growth factors. No significant difference in the severity of clade G infections was observed (aOR 0·95 (95% CI: 0·35-2·52). Though viral loads were significantly higher, there was no evidence of increased transmissibility of clade G, and replicative fitness in cell culture was similar for all clades. INTERPRETATION: Infection with clades L/V was associated with increased severity and more systemic release of pro-inflammatory cytokines. Infection with clade G was not associated with changes in severity, and despite higher viral loads there was no evidence of increased transmissibility.


Assuntos
COVID-19/etiologia , COVID-19/transmissão , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Adulto , Fatores Etários , Idoso , COVID-19/epidemiologia , COVID-19/imunologia , Comorbidade , Feminino , Humanos , Hipóxia/terapia , Hipóxia/virologia , Masculino , Pessoa de Meia-Idade , Singapura/epidemiologia , Carga Viral
17.
Elife ; 102021 03 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1146275

RESUMO

Numerous reports of vascular events after an initial recovery from COVID-19 form our impetus to investigate the impact of COVID-19 on vascular health of recovered patients. We found elevated levels of circulating endothelial cells (CECs), a biomarker of vascular injury, in COVID-19 convalescents compared to healthy controls. In particular, those with pre-existing conditions (e.g., hypertension, diabetes) had more pronounced endothelial activation hallmarks than non-COVID-19 patients with matched cardiovascular risk. Several proinflammatory and activated T lymphocyte-associated cytokines sustained from acute infection to recovery phase, which correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Notably, we found higher frequency of effector T cells in our COVID-19 convalescents compared to healthy controls. The activation markers detected on CECs mapped to counter receptors found primarily on cytotoxic CD8+ T cells, raising the possibility of cytotoxic effector cells targeting activated endothelial cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed.


Assuntos
COVID-19/complicações , Doenças Cardiovasculares/etiologia , Endotélio Vascular/patologia , Ativação Linfocitária , Adulto , Idoso , COVID-19/imunologia , COVID-19/patologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/patologia , Citocinas/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio Vascular/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
18.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1140315

RESUMO

Despite the importance of nucleic acid testing in managing the COVID-19 pandemic, current detection approaches remain limited due to their high complexity and extensive processing. Here, we describe a molecular nanotechnology that enables direct and sensitive detection of viral RNA targets in native clinical samples. The technology, termed catalytic amplification by transition-state molecular switch (CATCH), leverages DNA-enzyme hybrid complexes to form a molecular switch. By ratiometric tuning of its constituents, the multicomponent molecular switch is prepared in a hyperresponsive state-the transition state-that can be readily activated upon the binding of sparse RNA targets to turn on substantial enzymatic activity. CATCH thus achieves superior performance (~8 RNA copies/µl), direct fluorescence detection that bypasses all steps of PCR (<1 hour at room temperature), and versatile implementation (high-throughput 96-well format and portable microfluidic assay). When applied for clinical COVID-19 diagnostics, CATCH demonstrated direct and accurate detection in minimally processed patient swab samples.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19 , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Testes Imediatos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/métodos , Humanos , Limite de Detecção
19.
Cell Rep Med ; 2(2): 100193, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: covidwho-1069040

RESUMO

Early detection of infection is crucial to limit the spread of coronavirus disease 2019 (COVID-19). Here we develop a flow cytometry-based assay to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein antibodies in individuals with COVID-19. The assay detects specific immunoglobulin M (IgM), IgA, and IgG in individuals with COVID-19 and also acquisition of all IgG subclasses, with IgG1 being the most dominant. The antibody response is significantly higher at a later stage of infection. Furthermore, asymptomatic individuals with COVID-19 also develop specific IgM, IgA, and IgG, with IgG1 being the most dominant subclass. Although the antibody levels are lower in asymptomatic infection, the assay is highly sensitive and detects 97% of asymptomatic infections. These findings demonstrate that the assay can be used for serological analysis of symptomatic and asymptomatic infections, which may otherwise remain undetected.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/patologia , Switching de Imunoglobulina/fisiologia , Imunoglobulina G/sangue , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/imunologia , Doenças Assintomáticas , COVID-19/imunologia , COVID-19/virologia , Citometria de Fluxo , Humanos , Imunoglobulina G/imunologia , Testes Imunológicos/métodos , SARS-CoV-2/isolamento & purificação
20.
J Infect ; 82(4): e27-e28, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-988400
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA